1. Which does **not** name the angle below?

 ![Diagram showing angles DCE, CDE, ECD, and C]

 The vertex “C” has to be the middle letter when using 3 letters to name the angle.

 a. \(\angle DCE \)
 b. \(\angle CDE \)
 c. \(\angle ECD \)
 d. \(\angle C \)

2. \(m\angle OMN = (2x + 9)^\circ \) and \(m\angle LMN = (6x - 7)^\circ \) and \(m\angle OML = 34^\circ \). Find \(m\angle OMN \).

 \[
 6x - 7 + 2x + 9 = 34 \\
 8x + 2 = 34 \\
 8x = 32 \\
 x = 4
 \]

 \(\frac{8x}{8} = \frac{32}{8} \)

 \(x = 4 \)

 \[
 m\angle OMN = 2x + 9 = 2(4) + 9 = 8 + 9 = 17^\circ
 \]

3. The measure of angle \(A \) is 98°. Classify angle \(A \) as an acute, right, or obtuse angle. **Obtuse**

4. \(\overrightarrow{AB} \) bisects \(\angle LAX \) and \(\angle LAB \) measures 68°. Find the measure of \(\angle XAB \). Draw a picture!

 \[
 m\angle XAB = 68^\circ
 \]

5. If \(\angle R \) and \(\angle S \) are complementary and \(m\angle R = 35^\circ \), then

 a. \(m\angle S = 145^\circ \)
 b. \(m\angle S = 125^\circ \)
 c. \(m\angle S = 55^\circ \)
 d. \(m\angle S = 215^\circ \)

6. If \(\angle G \) and \(\angle H \) are supplementary and \(m\angle H = 67^\circ \), then **113°**.

 \[
 180^\circ - 67^\circ = 113^\circ
 \]

7. Solve for \(x \):

 \[
 4x + 90 + 2x + 72 = 180 \\
 6x + 162 = 180 \\
 6x = 18 \]
 \[
 \frac{6x}{6} = \frac{18}{6} \]

 \(x = 3 \)

 \[
 4x - 3 = 2x + 9 \\
 -2x = -2x + 12 \\
 2x = 12 \]
 \[
 \frac{2x}{2} = \frac{12}{2} \]

 \(x = 6 \)
8. \(\angle 1 \) and \(\angle 2 \) form a linear pair. \(m \angle 1 = 73^\circ \). Find \(m \angle 2 \).

\[180^\circ - 73^\circ = 107^\circ \]

9. Name two pairs of vertical angles in the figure above. \(\angle 1 \) and \(\angle 3 \), \(\angle 2 \) and \(\angle 4 \)

Writing:

10. Explain how you would tell another student how to find the value of \(x \) in the figure below.

\[\text{Add all 3 angles together and set it equal to } 180^\circ \]

11. Which figure below is **not** a polygon?

 a.
 b.
 c.
 d.

12. Which one of the statements below is **false**?
 a. A circle is NOT a polygon.
 b. An octagon has 8 angles.
 c. A decagon has 10 sides.
 d. A pentagon has 9 sides.

13. Name a polygon with 6 sides.

 a. pentagon
 b. octagon
 c. quadrilateral
 d. hexagon

14. Complete the statement. A regular polygon is both equilateral and equiangular.

15. Name a polygon with 10 sides. **Decagon**

16. The lengths (in inches) of two sides of a regular octagon are represented by the expressions \(2x + 4 \) and \(3x - 8 \). Find the length of a side of the octagon.

 \[\frac{2x + 4 = 3x - 8}{-3x} \]

 \[\frac{4 = x - 8}{+8} \]

 \[\frac{12 = x}{2} \]

 \[2(12) + 4 = 24 + 4 = 28 \text{ units} \]

 \[3(12) - 8 = 36 - 8 = 28 \text{ units} \]

17. Explain why the hexagon is **not regular**.

 All of the sides are **not** congruent so the figure can't be regular.

 Regular means **ALL** sides and **ALL** angles are congruent.